28 January 2020 , 16:00 - 17:30

HU Berlin Lecture Series on AI: David Stillwell (Cambridge)

"Big Data or Big Brother? The ethics of big data psychometrics" (HU main building)

IZBF Lecture Series 2020 "Machine Learning / Intelligent Data Analysis"


Dr. David Stillwell, Lecturer in Big Data Analytics and Quantitative
Social Science,  Academic Director - The Psychometrics Centre, Cambridge
University Judge Business School

Abstract: Many  researchers,  including  myself  (e.g.  Kosinski,  Graepel
 &  Stillwell,  2013),  have  published  papers  showing  that
psychological  traits  like personality  and  intelligence  can  be
predicted  from  the  digital footprints  people  leave  behind when  they
 use  online  services  like  social media. Should this  capability  be
used  in  practice,  and if  so  under  what conditions?  The  Facebook
Cambridge  Analytica scandal  clearly  demonstrates that the public is
uneasy when they feel their data was misused, but on the other hand the
public also likes their data to be used to personalise recommendations
and services.  This  session  will introduce  the  big  data
psychometrics  technology  and  will then encourage  debate  on  its
application by organisations.

NEXT:

Fri, 20 March 2020, 16.00 – 17.30 Uhr
"Combining Mobile Sensing and Machine Learning for Psychological
Assessment"
Dr. Clemens Stachl, Media and Personality Lab, Stanford University

*Venue* Humboldt-Universitaet zu Berlin, Unter den Linden 6, 10117 Berlin,
Senatssaal (1st floor)
*Abstract* The  increasing  digitization of  our  society  radically
changes  how  scientific  studies  are  being  conducted in  the  field.
In  the  social  sciences,  the analysis  of  online  repositories,
digital footprint data,  and  data  from  in-vivo  high-frequency  mobile
sensing now  allows  for  the  investigation of formerly intangible
psychological constructs. In contrast to past possibilities these methods
enable fine-grained, longitudinal data collections in the  wild, at  large
scale. The combination  with state  of  the  art  machine  learning
methods, provides  a  perspective  for  the  direct  prediction of
psychological traits and behavioral outcomes from these data. In my talk I
will give an  overview  on latest  studies combining machine learning with
mobile sensing.  In  particular, I  will highlight  findings  with regard
to  psychological  assessment  and  discuss the  limitations  of current
approaches. Consequently, I will introduce some of my own work and provide
an outlook perspective on where these developments could take the field.


Mon, 26 October 2020, 16.00 – 17.30 Uhr
„Lehrende, Lernende und Künstliche Intelligenz: Wie kann eine fruchtbare
Interaktion im Klassenraum von morgen aussehen?“ (Teachers, students and
artificial intelligence: What can a fruitful interaction in the classroom
of tomorrow look like?)
Prof. Dr. Nikol Rummel, Pädagogische Psychologie, Institut für
Erziehungswissenschaft, Ruhr-Universität Bochum

*Venue* Humboldt-Universitaet zu Berlin, Unter den Linden 6, 10117 Berlin,
Senatssaal (1st floor)


Organizers:
The Interdisciplinary Center for Educational Research (IZBF),
Humboldt-Universitaet zu Berlin, regularly invites renowned experts to
present theories, methods and findings from the field of educational
research. The lectures are open to the public and are aimed equally at
science, educational policy and educational practice. Machine Learning
(ML), Data Science and Artificial Intelligence (AI) are no longer future
topics. Artificial intelligence and data science are considered to be
central trends and currently important topics that are also increasingly
finding applications in educational contexts.

 

Location:

Humboldt-Universitaet zu Berlin

Unter den Linden 6

10117 Berlin

Senatssaal (1st floor)